

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Contribution Guidelines

General Codebase Changes

As of now, there are no strictly enforced guidelines. Try to keep to the spirit
of existing code. When done making changes, create a detailed pull request. Use
commits to the best of your ability. Additionally, see
[Understandig the Codebase](#understanding-the-codebase).

Branching

Forks and clones for contribution should be based from the dev branch.

Development Environment

Due to the use of resource files which allow C# generation, it is heavily
recommended that you use an established IDE such as
[Visual Studio](https://visualstudio.microsoft.com/downloads/) or
[Jetbrains Rider](https://www.jetbrains.com/rider/).

Localization

Command, argument, and option localization is placed in
[/FsTag/Descriptiosn.resx](./FsTag/Descriptions.resx). These are used in
key-based localization for commands, options, and operands.

Documentation

Conceptual documentation is placed in [/FsTag/docs](./FsTag/docs). These should
focus on individual concepts, such as diverse ways that a command uses its
parameters that cannot be easily represented in help text. Keep note that these
files are directly printed to the console via the fstag docs [module] command.

As of now, documentation is not localized.

Understanding the Codebase

Although relatively simple (as of writing this), there is a good body of
information contributors should be aware of, which will be detailed in this
section.

> File paths here are relative to the root of the repository, usually.

Commands

Commands should be placed in FsTag/Commands. As per CommandDotNet, each commmand
should have the [Commands(“name”, Description = “…”)] and [Subcommand]
attributes. On descriptions, they should be mapped to localization keys in
the aforementioned Descriptions.resx. Thus, command declarations should
look like the following;

`cs
[Command("command", Description = nameof(Descriptions.MyCommandDescriptions))
[Subcommand]
public class MyCommand { }
`

Additionally, new commands must be nested under Program, using it partially;

```cs
public partial class Program
{


[Command(“command”, Description = nameof(Descriptions.MyCommandDescriptions))
[Subcommand]
public class MyCommand { }





}

MyCommand will then be accessible via fstag command.

This structure is to allow the interceptor in Program to be effectively global,
in that it automatically implements –verbose, –quiet, and –dryrun. Commands
arent strictly required to use these, and also note that –quiet is automatically
implemented in WriteFormatter. –dryrun is also implemented, albeit in various
places, to avoid file, system, or configuration changes when running a command. For example,
the builtin FileIndex checks if Program.Dryrun is true before writing to the
index file.

A note on quiet, though: user prompts should be treated as returning a negative response,
such as no in a yes/no prompt, when –quiet is set.

On –verbose, this should be used when a more complex form of output should be
shown, such as a longer description of something.

Alas; for bulk commands, the same partial rule applies;

```cs
public partial class Program
{

public partial class BulkCommands
{

[LocalizedCommand(“command”, nameof(Descriptions.MyCommandDescriptions))
[Subcommand]
public class MyCommand { }

}

}

MyCommand will thus be accessible via fstag bulk command.

On that note, bulk commands should be placed in FsTag/Commands/Bulk.

Options and Operands/Arguments

Just like commands, operands and options should be specified using the
[Option] and [Operand] attributes, using the same syntax as [Command]
shown above. These too, should define descriptions using keys from
Descriptions.resx.

Output Formatting

The WriteFormatter is a static helper in FsTag/Helpers to simplify and
abstract console output. It uses an IConsole from the interceptor described
above, which is useful for unit testing. It also colors output according to the
type of output message. It has methods for writing plain text, information,
warnings, and errors with respective appropriate display colors.

Output information for just that, information. Output warnings when something
went wrong, but execution can safely continue. Output errors when something
went wrong, akin to an exception, which cannot be safely recovered from.
On that, exceptions do not need to be explicitly caught for logging purposes,
as that is already done so in the top-level interceptor. Wherein, an error is
output, followed by basic exception information.

If, for whatever reason, WriteFormatter cannot be used, Program.IConsole
should be used instead for unit testing purposes.

AppData

The AppData class is static “helper” which serves to abstract access to the
file system and common operatins with a unified collection of interfaces.
These interfaces are placedd in FsTag/Data/Interfaces, and are manually placed
in AppData. The default implementations of these interfaces are placed in
FsTag/Data/Builtin. Naturally, they pertain to the expected functionality of
the CLI and are instantiated by default in AppData. However, this is subject
to change.

Localization

Localization is achieved using .resx files, which should be located in
FsTag/Resources/. For this reason, it is reccomended that contributors use
Visual Studio, Rider, or any established .NET IDE. Localization keys should
be abbreviated or shortened where possible as to avoid long lines for
attributes.

Configuration

All configuration settings are implemented in FsTag/Data/Configuration.cs.
This is a class which is serialized/deserializd by JSON.NET, thus requiring
the [JsonProperty] attribute. All configuration properties should be
snake_case, with the C# identifier being UpperCamelCase.

 # FsTag

![license](https://img.shields.io/github/license/zeplar-exe/FsTag)
![build](https://img.shields.io/github/actions/workflow/status/zeplar-exe/FsTag/dotnet.yml)

FsTag is a utility command line interface for performing bulk operations on files.

Features

	Powerful file filtering and selection

	Flexible “session” functionality for managing specific groups of files

	Cross-platform compatibility for Windows, Mac, and Linux.

Installation

See versions and downloads in [Releases](https://github.com/zeplar-exe/FsTag/releases).

Additionally, add the executable to your PATH
- on [Windows](https://stackoverflow.com/a/41895179/16324801)
- on [Mac](https://apple.stackexchange.com/a/41586)
- on [Linux](https://unix.stackexchange.com/a/183299)

Basic Usage

The core functionality of the CLI is accessed via tagging:

`bash
> fstag test.txt
> fstag tag relative my/relative/file.md
> fstag tag glob **/*.cs
`

Wherein, files are selected relative to the current working directory using a [filter](FsTag/docs/filters.md).

All tagged files are stored in a session-specific index, which can be viewed with the print command:

`
> fstag print index
test.txt;
`

> There is no limit to how many files can be tagged (besides disk space for the index file, of course).

Once ready to act on indexed files, the various bulk commands can be used:

	fstag bulk delete

	crickets chirp in the distance

For more details, run fstag bulk -h or see [bulk_operations.md](FsTag/docs/bulk_operations.md).

Sessions

A tag ‘session’ is simply a group of tagged files which can be switched between, like so;

`
> fstag session switch my_session
`

This will change the session to my_session, as well as create it if necessary. All operations which
deal with tagging will be secluded to the current session.

Documentation

See [FsTag/docs](./FsTag/docs/).

The CLI also offers these files via the fstag docs command.

`
> fstag docs filters
Filters are a powerful mechanism for file selection used in tagging. All filters...
`

Contribution

See [Contributing.md](./CONTRIBUTING.md).

 —
alias: [bulk, bulk_op]
—

Bulk operations are operations run on every tagged file. They can be used via
fstag bulk and its subcommands.

Currently implemented bulk commands are as follows;

	fstag bulk delete
- Delete (or recycle) every tagged file

 —
alias: [configuration]
—
Configuration

Config, or configuration, represents global settings used by the
CLI. All configurations are stored at the following location:
%AppData%/fstag/config.json

All configurations are editable, stored as JSON key-value pairs.
That is, a key can have any valid JSON value. Note that most
terminals will require backslashes to escape characters such as
quotes.

`shell
> fstag config set some_config ""\"my_string_value\""
some_config="my_string_value''
`

This sets (and creates, if necessary) some_config with the value
“my_string_value”, specifically as a JSON string, in the
configuration file.

Likewise, a configuration’s value can be viewed by passing its
name to the command;

`shell
> fstag config some_config
"my_string_value"
`

There are no limitations to the name of a configuration.

 # Documentation

This file describes some protocols and notes for editing documentation files.

Use markdownlint

A .markdownlint.json configuration file is supplied in this directory.
As such, markdownlint is best used with the Visual Studio Code
[extension](https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint).

Aliases

An alias for a documentation file is defined in the YAML frontmatter like so;

`markdown

alias: [alias_1, alias_2]

`

An alias declaration must be an array of names, of which there are no limitations for.
These aliases are alternative names which can be used in place of the file name. For
example, if this file had the following alias definition;

`yaml
alias: [docs_alias]
`

Then, it can be accessed via the CLI like so;

`shell
> fstag docs docs_alias
`

 —
note: “Simplified descriptions of the filters listed here should also be placed in filters_simple.md”
—
Filters

Filters are a powerful mechanism for file selection used in
tagging. Filters are used in various commands using their
name/alias, such as “glob *.txt” for a glob filter. That
is, … alias filter ….

> Note that escaped backslashes and regular slashes are
> treated the same.

Currently implemented and supported filters are formatted follows:

	Filter Name [filter_alias, another_alias]

Description

	Relative [r, rel, relative]

A relative filter is simply a relative path from the current
working directory.
Ex: r some/path/relative/to/the/current/working/directory.txt

	Absolute [a, abs, absolute]

Absolute paths work for for disk roots or UNIX roots (/).
- Ex: abs C:/some/rooted/path.txt

	Regex [re, regex]

Any regex pattern is valid. Be wary of possible timeouts.
Ex: re .*.txt

	Glob/Formatted [f, g, formatted, glob]

See fstag docs globbing for more information.
Ex: g *.txt

If no format is specified, the CLI will attempt to default to a relative or
absolute path.

 —
alias: [“filters/simple”]
—
- Relative Path [r, rel, relative]
- Absolute Path [a, abs, absolute]
- Regex Pattern [re, regex]
- Glob/Formatted Pattern [f, g, formatted, glob]

 —
alias: [glob]
—
Globbing

Globbing is implemented via the DotNet.Glob package. It currently
supports the following patterns;

Shamelessly copied from their README…

Wildcard | Description | Example | Matches | Does not match |

——– | ———– | ——- | ——- | ————– |

* | matches any number of any characters including none | Law*| Law, Laws, or Lawyer |

? | matches any single character | ?at | Cat, cat, Bat or bat | at |

[abc] | matches one character given in the bracket | [CB]at | Cat or Bat | cat or bat |

[a-z] | matches one character from the range given in the bracket | Letter[0-9] | Letter0, Letter1, Letter2 up to Letter9 | Letters, Letter or Letter10 |

[!abc] | matches one character that is not given in the bracket | [!C]at | Bat, bat, or cat | Cat |

[!a-z] | matches one character that is not from the range given in the bracket | Letter[!3-5] | Letter1, Letter2, Letter6 up to Letter9 and Letterx etc. | Letter3, Letter4, Letter5 or Letterxx |

** | matches any number of path / directory segments. When used must be the only contents of a segment. | /**/some.* | /foo/bar/bah/some.txt, /some.txt, or /foo/some.txt |

When used in tagging, for example, the glob will be matched according to the
current working directory.

 # [File] Index

The file index is, at its simplest, a list of tagged files. Commands like
fstag tag and fstag rm manipulate this, adding and deleting from it
respectively.

This index is session-based, wherein, there is a single index file per session.
As such, it is located in`%AppData%/fstag/session/$current_session/index.nsv`.
Note that .nsv stands for “newline-seperated values”.

To view the index of the current session, use fstag print;

`shell
> fstag print index
C:/test.txt
C:/test2.txt
C:/test3.txt
C:/test4.txt
...
`

 # Printing

fstag print … is a special command, similar to fstag docs for viewing
various data related to the CLI. For example, fstag print index will print
semicolon-delimited vomit, consisting of every tagged file in the current
session.

`shell
> fstag print index
C:/some_file.txt;C:/some_other_file.txt;D:/file_on_another_drive.md
`

When printing, a key is supplied, such as index in the example above.
Any number of keys can be printed in one command like so,

```shell
fstag print index raw_config
C:/some_file.txt;C:/some_other_file.txt;D:/file_on_another_drive.md
{


“my_config_value”: 0,
…





}

For a complete list of print keys, simply use the fstag print command with
no keys attached.




            

          

      

      

    

  

    
      
          
            
  # Recursion

Various commands allow for recursive operations on the filesystem. Such as
fstag tag … and fstag rm …. In every case, it is usable via the
–recursive <depth> option like so;

`shell
> fstag tag glob *.txt --recursive 5
...
`

This will set a recurse depth of 5, meaning a maximum of 5 subfolders down
from the current working directory. If the depth is 0, no recursion takes
place. If the depth is less than 0, the operation will recurse every
sub-directory present, down the leaves of the directory tree.



            

          

      

      

    

  

    
      
          
            
  # Sessions

A session, at its core, is a collection of tagged files under a unique
identifier. It serves to isolate tagging operations with separated file
indexes.

By default, the ‘default’ session is used. If this session ceases to exist,
it will be created given no other option.

To switch (and create, if necessary) sesssions, use
fstag session switch my_session. All sessions are stored as directories
in %AppData%/fstag/sessions. Thus, a session name cannot contain invalid
path characters, such as / and &.

To delete a session and all of its contents, use fstag session rm my_session.
This will delete the directory, and it won’t be moved to the recycle bin.

To list all currently existing sessions, use fstag session on its own. The
currently in-use session with be marked with 3 asteriks;

`shell
> fstag session
default
***my_session
other_session
`



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





